Donaciones

MATEMATICA I

MATEMATICA I

MATEMATICA I


10. CONJUNTOS.
10.1. CONJUNTOS Y DETERMINACION.
10. CONJUNTOS.
10.1. CONJUNTOS Y DETERMINACION.
10. CONJUNTOS.
10.1. CONJUNTOS Y DETERMINACION.
ÍNDICE


‒ ¿Qué es un conjunto?

Un conjunto es grupo de cosas que tienen algo en común, eso que tiene en común es una característica que los define como parecidos o similares. Otra definición de conjunto es decir que toda colección de cosas comunes es un conjunto. Las cosas que forman un conjunto se les denomina elementos del conjunto.

Existen dos formas de determinar un conjunto, por extensión y por compresión.

‒ Conjuntos por extensión.

Decimos que un conjunto se determinar por extensión cuando se conocen y y se da una lista de todos y cada uno de los elementos de un conjunto.

Ejemplo 1.

El conjunto de los días de la semana, estará constituido por los siguientes elementos: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado, Domingo. Y su representación simbólica es:


S={Lunes,Martes,Miércoles,Jueves,Viernes,Sábado,Domingo}


Siempre en la representación simbólica se usan letras mayúsculas para identificar el conjunto, y los elemento se encierran con llaves {} y separados por comas.

Ejemplo 2.

El conjunto de todos los números naturales menores que 10, estará constituido por los siguientes elementos: 1,2,3,4,5,6,7,8,9. Y su representación simbólica es:


M={1,2,3,4,5,6,7,8,9}


‒ Conjuntos por compresión.

Decimos que un conjunto se determina por compresión cuando se describe una o varias características o propiedades que lo define, y no se da una lista de cada uno de sus elementos.

Ejemplo 1.

El conjunto de los días de la semana. En donde al determinarlo por compresión la propiedad será la frase : “un día de la semana”. Y simbólicamente su representación será:


S={x : x es un día de la semana}


en donde x:x se debe leer como “x tal que x ”, a veces se suele cambiar el símbolo : por la barra invertida. del siguiente modo: S={x/x es un día de la semana}

Ejemplo 2.

El conjunto de los números naturales menores que 10. En donde la propiedad se puede expresar a través de una desigualdad “n<10”, y también por otra propiedad que nos indique que son sólo números naturales, como la siguiente: x `in NN`. Simbólicamente tenemos:


M={x/x `in NN` y x<10}


en donde x/x `in NN` se debe leer como “x tal que x es un número natural”.

‒ Relación de pertenencia.

Considere el conjunto de las vocales:

V={a,e,i,o,u}

podemos observar que la letra a se encuentra dentro del conjunto de las vocales, entonces diremos que la letra a pertenece al conjunto de las vocales y se simboliza de la siguiente forma.

a `in` V

Ahora consideremos la letra d, de ello podemos observar que esta no se encuentra dentro del conjunto de las vocales, entonces diremos que la letra d no pertenece al conjunto de las vocales y se simboliza de la siguiente forma:

d `!in` V
‒ Representación gráfica de conjuntos.

La representación gráfica de un conjunto se hace con los diagramas de Venn, estos diagramas llamados así en honor a su creador el matemático, John Venn matemático y filosofo británico. Los diagramas de Venn pueden ser representados por la enumeración de sus elementos o por una o varias características o propiedades que lo identifica inequívocamente.

Para su representación por la enumeración de sus elementos, los elementos que pertenecen a un conjunto se encierran con líneas curvas cerradas, y por fuera se identifica con la letra mayúscula que identifica a el conjunto.

Ejemplo 1.

La representación gráfica del conjunto A={0,1,2,3,4,5} que también se puede definir por compresión como A={x : x `in NN` y x<=5}, se representa con diagramas de Venn, del siguiente modo:


Para su representación por una o varias características que lo identifica inequívocamente, se suele hacer de varias maneras, una de ellas es dibujar el conjunto sin elementos pero indicando la propiedad o característica que lo define y en algunos casos pintando el interior del conjunto con un color que ayude a su definición. Este tipo de diagramas generalmente se usan para representar conjuntos en donde sus elementos resultan un tanto difícil de enumerar o también para representar conceptos.

Ejemplo 2.

La representación gráfica del conjunto A={x/x es un grano de arena}, se puede representar del siguiente modo:


‒ Relación de inclusión de conjuntos.

Esta relación aparece cuando se puede observar que todos los elementos de un conjunto pertenecen a otro conjunto, entonces se dice que el primero es subconjunto del segundo o que está incluido en el segundo.

Ejemplo 1.

Considere el conjunto de los números menores que 10, A={1,2,3,4,5,6,7,8,9} y el conjunto de todos los números divisibles con 2 o pares menores que 10, B={2,4,6,8}, y el conjunto V={1,3,10,11,12}. De esto se puede observar lo siguiente: Que todos los elementos del conjunto B pertenecen al conjunto A, entonces el conjunto B esta incluido en A, simbólicamente se escribe:


B ⊂ A


Pero no todos los elementos del conjunto V pertenecen al conjunto A, entonces se dice que el conjunto V no esta incluido en el conjunto A, simbólicamente se escribe:


V ⊄ A


Y su representación gráfica con los diagramas de Ven, de estos conjuntos se hace del siguiente modo:


‒ Igualdad de conjuntos.

Se dice que dos conjuntos son iguales cuando los elementos de un conjunto también pertenecen al otro conjunto, con el que se compara o se relaciona. Es decir si los elementos del conjunto A, también pertenecen al conjunto B. Otra forma de decir que dos conjuntos son iguales es cuando decimos que un conjunto es igual a otro, si el primero esta incluido en el segundo y el segundo también esta incluido en el primero, esta última definición de igualdad de conjuntos se puede expresar simbólicamente del siguiente modo:

A=B ↔ A⊂B y B⊂A
Ejemplo 1.

Dados los siguientes conjuntos, A={1,2,3,4} y B={x/x `in NN` y x<5}, se dice que ambos son iguales ya que todos los elementos de A, también pertenecen a B y viceversa todos los elementos de B también pertenecen a A.




ÍNDICE


 
‒ Sugerencias o comentarios.

"Agradezco que se tomen su tiempo, para escribirme una sugerencia o comentario. Toda sugerencia o comentario que me escriban me ayuda a mejorar los contenidos de la web acorde a sus necesidades. Las sugerencias o comentarios, se recibirán siempre y cuando ingrese al menos su nombre o seudónimo y la sugerencia o comentario. Las sugerencias o comentarios son de uso interno y no serán publicadas en la web Conoce3000"








PORTADA |  INTERESANTE |  APUNTES |  LIBROS |  GALERIA


Creative Commons License


Todos los textos, imágenes y videos de Conoce3000 estan colocados bajo una licencia : Creative Commons Reconocimiento-NoComercial 3.0 Unported License.